Radiation sickness is damage to your body

Radiation sickness is damage to your body caused by a large dose of radiation often received over a short period of time (acute). The amount of radiation absorbed by the body — the absorbed dose — determines how sick you’ll be.
Radiation sickness is also called acute radiation sickness, acute radiation syndrome or radiation poisoning. Common exposures to low-dose radiation, such as X-ray or CT examinations, don’t cause radiation sickness.
Although radiation sickness is serious and often fatal, it’s rare. Since the atomic bombings of Hiroshima and Nagasaki, Japan, during World War II, most cases of radiation sickness have occurred after nuclear industrial accidents such as the 1986 fire that damaged the nuclear power plant at Chernobyl or the 2011 earthquake that damaged the nuclear power plant on the east coast of Japan.

SYMPTOMS

The severity of signs and symptoms of radiation sickness depends on how much radiation you’ve absorbed. How much you absorb depends on the strength of the radiated energy and the distance between you and the source of radiation. Signs and symptoms also are affected by the type of exposure — such as total or partial body and whether contamination is internal or external — and how sensitive to radiation the affected tissue is. For instance, the gastrointestinal system and bone marrow are highly sensitive to radiation.

Absorbed dose and duration of exposure

The absorbed dose of radiation is measured in a unit called a gray (Gy). Diagnostic tests that use radiation, such as an X-ray, result in a small dose of radiation — typically well below 0.1 Gy, focused on a few organs or small amount of tissue.
Signs and symptoms of radiation sickness usually appear when the entire body receives an absorbed dose of at least 1 Gy. Doses greater than 6 Gy to the whole body are generally not treatable and usually lead to death within two days to two weeks, depending on the dose and duration of the exposure.

Initial signs and symptoms

The initial signs and symptoms of treatable radiation sickness are usually nausea and vomiting. The amount of time between exposure and when these symptoms develop is an indicator of how much radiation a person has absorbed.
After the first round of signs and symptoms, a person with radiation sickness may have a brief period with no apparent illness, followed by the onset of new, more serious symptoms.
In general, the greater your radiation exposure, the more rapid and more severe your symptoms will be.
Early symptoms of radiation sickness* Mild exposure (1-2 Gy)Moderate exposure (2-6 Gy)Severe exposure (6-8 Gy)Very severe exposure (8-10 Gy or higher)Nausea and vomitingWithin 6 hoursWithin 2 hoursWithin 1 hourWithin 10 minutesDiarrhea–Within 8 hoursWithin 3 hoursWithin 1 hourHeadache–Within 24 hoursWithin 4 hoursWithin 2 hoursFever–Within 3 hoursWithin 1 hourWithin 1 hourLater symptoms of radiation sickness*Dizziness and disorientation-- --Within 1 weekImmediateWeakness, fatigueWithin 4 weeksWithin 1-4 weeksWithin 1 weekImmediateHair loss, bloody vomit and stools, infections, poor wound healing, low blood pressure–Within 1-4 weeksWithin 1 weekImmediate

  • Adapted from Radiation exposure and contamination. The Merck Manuals: The Merck Manual for Healthcare Professionals.

When to see a doctor

An accident or attack that causes radiation sickness would no doubt cause a lot of attention and public concern. If such an event occurs, monitor radio, television or online reports to learn about emergency instructions for your area.
If you know you’ve been exposed to radiation, seek emergency medical care.

CAUSES

Radiation is the energy released from atoms as either a wave or a tiny particle of matter. Radiation sickness is caused by exposure to a high dose of radiation, such as a high dose of radiation received during an industrial accident. Common exposures to low-dose radiation, such as X-ray examinations, don’t cause radiation sickness.

Sources of high-dose radiation

Possible sources of high-dose radiation include the following:

An accident at a nuclear industrial facility

An attack on a nuclear industrial facility

Detonation of a small radioactive device

Detonation of a conventional explosive device that disperses radioactive material (dirty bomb)

Detonation of a standard nuclear weapon

Radiation sickness occurs when high-energy radiation damages or destroys certain cells in your body. Regions of the body most vulnerable to high-energy radiation are cells in the lining of your intestinal tract, including your stomach, and the blood cell-producing cells of bone marrow.

COMPLICATIONS

Radiation exposure that causes immediate radiation sickness significantly increases a person’s risk of developing leukemia or cancer later in life.
Having radiation sickness could also contribute to both short-term and long-term mental health problems, such as grief, fear and anxiety about:

Experiencing a radioactive accident or attack

Mourning friends or family who haven’t survived

Dealing with the uncertainty of a mysterious and potentially fatal illness

Worrying about the eventual risk of cancer due to radiation exposure

TESTS AND DIAGNOSIS

When a person has experienced known or probable exposure to a high dose of radiation from an accident or attack, medical personnel take a number of steps to determine the absorbed radiation dose. This information is essential for determining how severe the illness is likely to be, which treatments to use and whether a person is likely to survive.
Information important for determining an absorbed dose includes:

Known exposure. Details about distance from the source of radiation and duration of exposure can help provide a rough estimate of the severity of radiation sickness.

Vomiting and other symptoms. The time between radiation exposure and the onset of vomiting is a fairly accurate screening tool to estimate absorbed radiation dose. The shorter the time before the onset of this sign, the higher the dose. The severity and timing of other signs and symptoms may also help medical personnel determine the absorbed dose.

Blood tests. Frequent blood tests over several days enable medical personnel to look for drops in disease-fighting white blood cells and abnormal changes in the DNA of blood cells. These factors indicate the degree of bone marrow damage, which is determined by the level of an absorbed dose.

Dosimeter. A device called a dosimeter can measure the absorbed dose of radiation but only if it was exposed to the same radiation event as the affected person.

Survey meter. A device such as a Geiger counter can be used to survey people to determine the body location of radioactive particles.

Type of radiation. A part of the larger emergency response to a radioactive accident or attack would include identifying the type of radiation exposure. This information would guide some decisions for treating people with radiation sickness.

TREATMENTS AND DRUGS

The treatment goals for radiation sickness are to prevent further radioactive contamination; treat life-threatening injuries, such as from burns and trauma; reduce symptoms; and manage pain.

Decontamination

Decontamination is the removal of as much external radioactive particles as possible. Removing clothing and shoes eliminates about 90 percent of external contamination. Gently washing with water and soap removes additional radiation particles from the skin.
Decontamination prevents further distribution of radioactive materials and lowers the risk of internal contamination from inhalation, ingestion or open wounds.

Treatment for damaged bone marrow

A protein called granulocyte colony-stimulating factor, which promotes the growth of white blood cells, may counter the effect of radiation sickness on bone marrow. Treatment with this protein-based medication, which includes filgrastim (Neupogen) and pegfilgrastim (Neulasta), may increase white blood cell production and help prevent subsequent infections.
If you have severe damage to bone marrow, you may also receive transfusions of red blood cells or blood platelets.

Treatment for internal contamination

Some treatments may reduce damage to internal organs caused by radioactive particles. Medical personnel would use these treatments only if you’ve been exposed to a specific type of radiation. These treatments include the following:

Potassium iodide. This is a nonradioactive form of iodine. Because iodine is essential for proper thyroid function, the thyroid becomes a “destination” for iodine in the body. If you have internal contamination with radioactive iodine (radioiodine), your thyroid will absorb radioiodine just as it would other forms of iodine. Treatment with potassium iodide may fill “vacancies” in the thyroid and prevent absorption of radioiodine. The radioiodine is eventually cleared from the body in urine. Potassium iodide isn’t a cure-all and is most effective if taken within a day of exposure.

Prussian blue. This type of dye binds to particles of radioactive elements known as cesium and thallium. The radioactive particles are then excreted in feces. This treatment speeds up the elimination of the radioactive particles and reduces the amount of radiation cells may absorb.

Diethylenetriamine pentaacetic acid (DTPA). This substance binds to metals. DTPA binds to particles of the radioactive elements plutonium, americium and curium. The radioactive particles pass out of the body in urine, thereby reducing the amount of radiation absorbed.

Supportive treatment

If you have radiation sickness, you may receive additional medications or interventions to treat:

Bacterial infections

Headache

Fever

Diarrhea

Nausea and vomiting

Dehydration

Burns

End-of-life care

A person who has absorbed large doses of radiation (6 Gy or greater) has little chance of recovery. Depending on the severity of illness, death can occur within two days or two weeks. People with a lethal radiation dose will receive medications to control pain, nausea, vomiting and diarrhea. They may also benefit from psychological or pastoral care.

LIFESTYLE AND HOME REMEDIES

In the event of a radiation emergency, there are precautions you can take. In the event of a radiation emergency, stay tuned to your radio or television to hear what protective actions local, state and federal authorities recommend. Recommended actions will depend on the situation, but you will be told either to stay in place or evacuate your area.

Shelter in place

If you’re advised to stay where you are, whether you’re at home or work or elsewhere, do the following:

Close and lock all doors and windows.

Turn off fans, air conditioners and heating units that bring air in from outside.

Close fireplace dampers.

Bring pets indoors.

Move to an inner room or basement.

Stay tuned to your emergency response network or local news.

Evacuate

If you’re advised to evacuate, follow the instructions provided by your local authorities. Try to stay calm and move quickly and in an orderly manner. In addition, travel lightly, but take supplies, including:

Flashlight

Portable radio

Batteries

First-aid kit

Necessary medicines

Sealed food, such as canned, and bottled water

Manual can opener

Cash and credit cards

Extra clothes

Be aware that most emergency vehicles and shelters won’t accept pets. Take them only if you’re driving your own vehicle and going someplace other than a shelter